访问平台,带给您最优的客户体验,全面的技术指导

bp神经网络用啥算法?(怎么用遗传算法优化bp神经网络)

作者:梦兮      发布时间:2021-08-22      浏览量:29649
bp神经网络用啥算法?自己找个例子算一下,推导一下,这个回答起来比较复杂神经网络对模型的表达能力依赖于优化算法,优化是一个不断计算梯度并调整可学习参数的过程,Fluid中的优化算法可参考优化器。在网络的训练过程中,梯度计算分为两个步骤:前向

bp神经网络用啥算法?


自己找个例子算一下,推导一下,这个回答起来比较复杂
神经网络对模型的表达能力依赖于优化算法,优化是一个不断计算梯度并调整可学习参数的过程,Fluid中的优化算法可参考优化器。
在网络的训练过程中,梯度计算分为两个步骤:前向计算与反向传播。
前向计算会根据您搭建的网络结构,将输入单元的状态传递到输出单元。
反向传播借助链式法则,计算两个或两个以上复合函数的导数,将输出单元的梯度反向传播回输入单元,根据计算出的梯度,调整网络的可学习参数。
BP算法
隐层的引入使网络具有很大的潜力。但正像Mi

怎么用遗传算法优化bp神经网络


遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头

请问智能优化算法以及神经网络能不能用数学理论进行证明?


智能优化算法多达十几种,你说的是哪一种?而且你光说算法证明,这个算法本来就不存在证明,所谓的证明就是对算法收敛性的证明。就拿最普遍的遗传算法来说吧,这个的证明通常是用马氏链来描述,Holland本人则是通过模式方式来证明,但是证明过程被大家所 不认同。因为这种启发式随机搜索算法只能用概率来描述他的行为,那么一个依概率存在的东西,找到最优也是依概率的,所以所有的智能算法至今没有任何一个人说他的算法收敛性证明是严谨的,是经得起推敲的。所以算法的证明通常书上不说,要么就是简要说一下,因为本身意义不大,实际

什么是神经网络的BP算法


简介:BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)